My Beetle Restoration

Archive for April, 2018

Disassembling and Removing the Front Axle

by on Apr.02, 2018, under Chassis

I placed the front axle beam on jack stands and then removed both front tires. To remove the brake drums, I removed the grease caps, the dual axle nuts and lock plates, and the outer wheel bearings. Being a total rookie at this, I couldn't tell why the drums would not just slide off at this point. After wrestling with both drums for a while, I determined that I needed to adjust the brake shoe adjustments to bring the brake shoes in more and away from the drum. As soon as I did that, the drums slid off easily. The brake shoe star adjusters are accessible through a hole in the face of the drum and you can use a screwdriver to turn the adjusters. You just rotate the drum until you can see the adjusters. There are two on each wheel. Once the drums are off, the brake backing plates can be removed by removing the three bolts attaching it to the spindle.


Next, I removed the tie rods. I started with the long rod on the passenger side and was unable to loosen the nut on the tie rod end that connects to the spindle. It would just spin in place. Since it will be replaced anyway, I just cut it off, leaving about 1/2 inch to use to remove the threads. On the other end where it connects to the steering box arm, I was able to loosen the nut and break the tie rod end away from the arm. The short tie rod on the driver side cooperated and was removed. Note: The short tie rod for this year is a non-adjustable one and the ends are not replaceable. These are no longer available and will have to be replaced with a later version that is adjustable. It will function the same, but will just look a bit different. Also, when I removed the shocks, the top bolt on the driver side broke off leaving the threads in the beam. I'll leave that there for now.


Next off were the sway bar and steering box. The clamps that hold the sway bar on were very rusted and two of the four clamps were already broken. The two that were still intact were difficult to get off and required a chisel and hammer to drive the retaining plates off of the clamps. The steering box had so much road grime and undercoating on it that I had to scrape it off before being able to bend the locking plates back and get a wrench on the nuts to unbolt it. I had been wondering just how I would know where to place the steering box back on the beam once it is ready to be reassembled, but there are raised square guides on the top of the beam that show exactly where it needs to be placed.


The spindles and torsion arms were the last two items to come off before removing the axle beam. The spindles are held on to the torsion arms with one bolt on each arm. Once the bolts were loosened, it was a matter of opening the split joints where they are bolted a little to allow them to pull out. The torsion arms are held on by a grub screw and a one nut. The nuts were easy to loosen and the grub screws required an 8mm hex driver, which I happened to still have from working on my 1967 back in the early 1980's. After the grub screws were backed out, the bottom torsion arms just slid right out. The top torsion arms were a little more difficult to remove as they were still under tension and resting on the stop arms. All I needed to do is hammer them out a little and then they could be pulled past the stop arm, allowing them to drop down and relieve the tension. Then they were easily removed.


Finally, I removed the front axle. Once the four bolts were removed, I had to pull it off as the road grime and undercoating were still holding it on. I was pleasantly surprised at the condition of the metal where the axle and frame head meet. There was very little rust there at all. I have seen quite a few restorations where people remove the axle to find a lot of rust damage there. I'm so happy to discover that this area only has a small amount of surface rust that can be easily removed. Next up - disassembling the rear of the chassis.


Leave a Comment :, , , , , , , , , , , , , , more...

Removing Rear Chassis Components

by on Apr.07, 2018, under Chassis

With the front axle and components removed, I now decided to remove the rear chassis components and started with the rear brake drums. In order to be able remove the axle nuts holding the brake drums on the rear wheels, I purchased an 36mm axle nut tool from M&T Manufacturing. This allows you to hammer the nuts loose. Otherwise, you typically need a heavy duty breaker bar and an extension, which I would have to purchase. It easily loosened them, which was a big relief. I was expecting a tougher time getting them to break free. I did have to remove the wheels first to have the clearance needed to hit the wrench.

With the axle nuts off, I adjusted the brake shoes all the way in so that I could pull the drums off. The adjusters are conveniently located on the bottom, so I had to lay on the ground to be able to see and access them. The passenger side came of fairly easy, but the driver side was rusted to the spindle and I had to beat it loose from the back. I used a spanner wrench and rotated it a quarter turn after each blow. It took quite a while to get it off.

Next, I removed the bearing cover plates which also retain the brake backing plates. Because I had forgotten to drain the transmission fluid, the fluid came pouring out of the first axle tube once the backing plate and cover plate were removed. It made a nice mess on the floor. I then drained the transmission before removing the other side, so the fluid that drained out the axle tube was greatly reduced.

I removed the shocks and then removed the 3 bolts on each side to that connect the axle tubes to the spring plates. The top bolt on each side also holds the stop bracket and rubber bumper. The axle tubes are now free from the chassis.

To Remove the transmission, I removed the rear mounting bracket, disconnected the shift rod coupler from the shift rod and transmission shaft, and then unbolted the front mounting bracket. I had to leave the front mounting bracket on the transmission as one nut was rusted and worn away and I could not get a wrench on it. I will remove the bracket later.

The gearshift rod is removed from the tunnel through the hole covered by the inspection cover plate on the front of the frame head. It is normally a little difficult to remove as you can only access it to move it through the tunnel through the small hole where the shift knob connects to the rod. There is really only enough room for two fingers and you really can't get much of a grip on it. It has to be rotated clockwise about 45 degrees so that it can clear a plate towards the front of the tunnel and it can be hard to maintain that position all the way out and it will hit the plate or bind if in the wrong position. Mine kept binding and hitting the plate again and again. I had to walk away from it and come back to try again several times. I have removed these before and never had this much trouble getting them out. Just when I thought I was going to have to leave it in the tunnel until I removed the bottom plate from the tunnel, it finally broke free and I was able to get it out. It was very rusted and the rust was grabbing and binding against anything it touched. If it were smoother, it would have been much easier to remove.

The spring plates and torsion rods are my last mechanical items left to remove from the chassis. I started by removing the spring plate bushing covers and the rubber outer bushings. I then marked the current position of the spring plates on the spring plates and bushing housings so that I will have a reference to get them in the same position with the same tension when they are reinstalled. The spring plates have to be hammered out from the inner side of the plates, so I put the bushing covers back on and applied tension from the underside of the spring plate using my floor jack. This keeps the spring plates from flying away from the housing and causing injury or worse. These plates are under great pressure, so they need to be removed with great care. After a few blows, the spring plates slide out enough to clear the housing and drop all the way down and are no longer under tension. At that point, I removed the bushing covers and hammered them the rest of the way out. The driver side spring plate came out still stuck on the torsion rod and the passenger side was welded to the torsion rod and came out together as well. I'm not sure why one was welded and the other one not, or if it makes any difference at all. Something to research. Once the torsion rods were out, I removed the rubber inner bushings. That's the last of the chassis components to be removed without cutting and drilling.

After getting the chassis stripped, I turned it over to get my first good look at the extent of the rust damage. The frame head bottom plate is definitely toast and I really will not know the condition of the tunnel until I remove the bottom plate. It's going to be a lot of work, but needs to be done. There will be sections that will need to be cut out and replaced. Once I have the plate off, I will have a much better idea of just how much. Overall, it's in better shape than I expected.

Leave a Comment :, , , , , , , , , , , , , more...

Removing Tunnel Bottom Plate

by on Apr.23, 2018, under Chassis

After considering the pros and cons of removing a section of the tunnel bottom plate, I decided to go ahead and do it. With all of the rust damage that can be seen from outside of the tunnel, I really can't tell if the inside is damaged to the same extent just by looking from the outside. I would expect it to be much less on the top and sides, but the bottom was definitely exposed to water pooling inside of it for many years. Until I take the plate off and look, I will not be able to have an accurate assessment of the damage. Here are some considerations:

Pros: I'll know for sure what damage is there and be able to fully access it to repair it. Areas with rust damage are weaknesses in the structure and must be removed and any rust that is there will just progress and must be stopped. I'll have a better chance of doing that by getting inside and taking a look. Also, large sections of the lip where the floor pans rest on both sides have to be replaced. On the driver's side, it is eaten completely through. Overall, I think it will result in a much better repair when I can get the areas cut out, prepped, and the replacements welded in when having access to the inside. I can also get the inside of that section of the tunnel painted and protected, replace the fuel line, and install seat belt mounting plates.

Cons: The possibility of structural weakness if not properly welded and/or the creation of alignment issues. These are the two biggest downsides to taking the bottom plate off and welding it back on. Of course, any area where the welds are weak are a concern, but so is any unrepaired area with rust damage that is concealed and inaccessible inside of the tunnel. I currently have areas where the rust is a potential weakness and I think as long as I get good weld penetration and good adherence to both parts being welded, structural strength will be achieved. Also, once the bottom plate is removed, the tunnel is very flexible and is easily twisted. This could result in the frame head being in a position where it is not level or tilting. There is going to be a lot welding both for the replacement of the side strips with the floor pan lip and putting the tunnel plate back on and ample chances that those welds will pull the tunnel one way or another. Well on this chassis, so much is going to be replaced and constant checks of alignment and position will have to be made during the rebuilding process anyway. I will just have to check, double-check, and triple-check throughout this process and hope that I can be successful. There are so many areas that are going to have to be replaced on this car with the body as well, so getting this all correct is imperative.

To start taking the bottom plate off, I used a wire wheel in my drill to remove any paint, undercoating, or rust to reveal the spot welds. There are a ton of welds to drill out! My last count was 142.

Important Update: Not knowing what I was doing, I drilled out twice as many spot welds than needed. If you look carefully at the close-up of the spot welds below, there are two types of spot welds - ones that are smooth, dished, and even, and ones where the metal is raised and uneven. The smooth and even ones are the ones that were made using a higher voltage to attach the tunnel bottom plate to the tunnel. These two pieces are thick and the higher voltage melts the metal more, creating a dish in both. The other raised and uneven welds were created when attaching the floor pan to the lip of the tunnel and were created with a lower voltage since the floor pans are thinner. Because of this lower voltage, it doesn't penetrate fully though the tunnel bottom plate and therefore these do not need to be drilled out. An important lesson learned that I will not forget! These were typically alternated, so basically half them were unnecessary.

The area I am going to remove starts with the frame head bottom plate and goes down to where the tunnel starts to flare out to the forks. That area appears to be in great shape, so no need to do anything with it. At the front end of the tunnel bottom plate, it is overlapped by the frame head bottom plate. In its current condition, the overlapped area is just a huge stack of rusted metal that is bulging outward.

The spot weld cutter that I'm using has a pilot to hold the cutter in one place to cut the holes. This works for about three holes and then it starts skating and making deep circular scratches as it skates away. The duller the tip of the pilot gets, the more uncontrollable it becomes. I discovered that if I take a center punch and mark the center of each spot weld and then use a small drill bit around the size of the pilot to drill a shallow hole in each punch mark, the tool is much easier to control and use. It actually saves time in the long run as you are not fighting to keep it on the correct spot and having to stop and restart the cut. Trust me, it's worth the extra effort. It cuts a 3/8-inch hole which is kind of large, but it does a great job of getting the whole spot weld. These are available from Harbor Freight for $5 each.

Next, I made the cross cut at the frame head plate and at the other end of the tunnel plate. Once the cut was made at the frame head end, big chunks of rusted metal just fell off.

And finally, cutting out the spot welds. This took many hours and the good part of one day to accomplish. I started on the driver side at the frame head and would cut out several of them and then gently pry up with a screwdriver to see if the plate was breaking free. I tried very hard not to drill into the lip below it to keep that section intact as much as possible. I would drill down watching the cuttings carefully and looking for rust to appear. Once I saw the rust, I would vacuum the area and look into the hole to see if I was all the way through the plate. This worked well until I got to the middle of the plate. I couldn't see any signs that I missed a spot weld and it just wasn't moving. so I started at the other end thinking that would help, but it was the very same even once it was free on both ends all the way to the middle. I used the screwdriver to attempt to pry it free. No such luck. I decided to take a break and when I was getting up from sitting on my stool, I barely bumped the Napoleon hat with my drill and the whole side popped loose. Of course, the other side was cooperative until I got to the middle and the same thing happened. I started on one end, gave up and started on the other, and got to the middle and it wouldn't break free. In this case, I had a couple of welds that I didn't cut quite deep enough and once I did that, it was completely free. It is amazing how much just part of a couple of spot welds will hold a piece in place! As expected, the top and sides of the inside of the tunnel were in excellent condition looking pretty much the same as they did the day they were initially assembled. The bottom plate itself is in good shape except at the end by the frame head. That end will require a inch or so cut out and a couple of inches added so that it extends to fit underneath the new frame head plate. It's a relief to get the plate off, but I know that I just added many more tasks and many more days of work to an already never-ending list of things to do. Next, I tackle getting the frame head bottom plate off. Should be fun!

5 Comments :, , , , , more...

Removing the Frame Head Bottom Plate

by on Apr.27, 2018, under Chassis

Since I'm replacing the Napoleon hat and there is really no room to drill or cut right next to the top of the frame head, I decided to cut off the arms of the Napoleon hat and trim back the bottom plate. This really made it easier to access. I used a wire brush in my drill to remove the undercoating and rust and reveal the spot welds. Once that was done, I did the same as on the tunnel bottom plate and punch-marked the center of the spot welds and drilled pilots for the spot weld cutter.

I then cut out the spot welds and cut out the inside part of the bottom plate, leaving just the strips where the plate was welded to the frame head. I am so glad that I went to the trouble to take the bottom plate off as there is some serious rust inside the frame head that just would not have been seen otherwise. The side of the tunnel underneath the Napoleon hat has deteriorated on both sides and will need patching with solid metal. Also, the tunnel section that extends through the frame head will need patching on both sides as well. Additionally, the frame head will need patching on the bottom portion where it is welded to the bottom plate on both sides. I have to admit, I was initially discouraged and contemplated replacing the entire frame head with a new after-market reproduction. But as I researched doing so, I determined that the effort and expense of removing the current one, patching the tunnel (which I have to do anyway), purchasing a new frame head (that will not match the current one and is constructed of thinner metal), and properly aligning the new frame head just was not the best course of action. With the tunnel bottom plate removed, the tunnel is just too flexible to be able to do any accurate alignment and I would rather take my chances with replacing the areas that absolutely need it and hopefully maintaining the current positioning as far as the angle of the frame head on the front end and where it is positioned on the tunnel. If I can maintain those two things, I will just need to make sure it is level when it is all welded and reassembled. Also, once it is taken off, I lose all of the current reference points and I really need it where it is now to get the new Napoleon hat properly positioned.

One of the things I found amazing and educational was how much the rusted areas have expanded over the years as they progressed, especially where the panels where overlapped. Where two panels, that were each originally around 2 millimeters thick, were overlapped and then rusted severely, their combined thickness grew to around 12 millimeters. In several areas where this happened, the surrounding areas of the panels were raised and bulged, distorting everything attached to it. On panels with nothing around them, they appear to just disintegrate and fall away. In areas where the panels are welded together and very close to other panels, they have expanded greatly.

Getting the remaining strips of the bottom plate off was a real pain. The spot welds are easy enough to cut out, but on the side edges of the frame head where it is welded to the plate it is seam-welded in the middle section for a couple of inches and towards the front for a couple of inches as well. I just had to cut around the seam-welded areas and grind them down. Where the plate meets the front edge of the frame head, it is seam welded all the way across. I was able to use a cutting disc to trim it back fairly close, but the rest had to be ground down. This is a lot of trouble for the side flanges that are going to be replaced, but I want to get it back to its original position to test fit the new bottom plate and to have good references for the areas that are going to be replaced. Once everything was cut and ground away, I just had to place the new bottom plate in position to see what it looks like. Even though its just sitting there, it feels like progress and is encouraging.

Next, I cut way the majority of the bottom plate that was welded to the frame head and ground it down. There are some areas that still need to be ground down, but I will save that until I am preparing and fitting the bottom plate. The next steps are to cut out the rusted areas and weld in patches.

Leave a Comment :, , , , , more...

Looking for something?

Type in keywords below to search the site:

Still not finding what you're looking for?
Contact me to see if I can help!